Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Trials ; 24(1): 213, 2023 Mar 22.
Article in English | MEDLINE | ID: covidwho-2262440

ABSTRACT

BACKGROUND: Immunosuppression after kidney transplantation is mainly guided via plasma tacrolimus trough level, which cannot sufficiently predict allograft rejection and infection. The plasma load of the non-pathogenic and highly prevalent torque teno virus (TTV) is associated with the immunosuppression of its host. Non-interventional studies suggest the use of TTV load to predict allograft rejection and infection. The primary objective of the current trial is to demonstrate the safety, tolerability and preliminary efficacy of TTV-guided immunosuppression. METHODS: For this purpose, a randomised, controlled, interventional, two-arm, non-inferiority, patient- and assessor-blinded, investigator-driven phase II trial was designed. A total of 260 stable, low-immunological-risk adult recipients of a kidney graft with tacrolimus-based immunosuppression and TTV infection after month 3 post-transplantation will be recruited in 13 academic centres in six European countries. Subjects will be randomised in a 1:1 ratio (allocation concealment) to receive tacrolimus either guided by TTV load or according to the local centre standard for 9 months. The primary composite endpoint includes the occurrence of infections, biopsy-proven allograft rejection, graft loss, or death. The main secondary endpoints include estimated glomerular filtration rate, graft rejection detected by protocol biopsy at month 12 post-transplantation (including molecular microscopy), development of de novo donor-specific antibodies, health-related quality of life, and drug adherence. In parallel, a comprehensive biobank will be established including plasma, serum, urine and whole blood. The date of the first enrolment was August 2022 and the planned end is April 2025. DISCUSSION: The assessment of individual kidney transplant recipient immune function might enable clinicians to personalise immunosuppression, thereby reducing infection and rejection. Moreover, the trial might act as a proof of principle for TTV-guided immunosuppression and thus pave the way for broader clinical applications, including as guidance for immune modulators or disease-modifying agents. TRIAL REGISTRATION: EU CT-Number: 2022-500024-30-00.


Subject(s)
Kidney Transplantation , Torque teno virus , Adult , Humans , Tacrolimus/adverse effects , Kidney Transplantation/adverse effects , Quality of Life , Immunosuppression Therapy , Graft Rejection/diagnosis , Graft Rejection/prevention & control , Immunosuppressive Agents/adverse effects
2.
Trials ; 23(1): 1042, 2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2274174

ABSTRACT

BACKGROUND: Chronic active antibody-mediated rejection (AMR) is a major cause of graft loss with no approved drugs for its treatment. Currently, off-label regimens are used, reflecting the high unmet need for effective therapies based on well-controlled trials. Clazakizumab is a high-affinity, humanized monoclonal antibody that binds interleukin-6 and decreases donor-specific antibody (DSA) production and inflammation. Phase 2 pilot studies of clazakizumab in kidney transplant recipients with chronic active AMR suggest modulation of DSA, stabilization of glomerular filtration rate (GFR), and a manageable safety profile. We report the design of the Phase 3 IMAGINE study (NCT03744910) to evaluate the safety and efficacy of clazakizumab for the treatment of chronic active AMR. METHODS: IMAGINE is a multicenter, double-blind trial of approximately 350 kidney transplant recipients with chronic active AMR (Banff chronic glomerulopathy [cg] >0 with concurrent positive human leukocyte antigen DSA) randomized 1:1 to receive clazakizumab or placebo (12.5 mg subcutaneous once every 4 weeks). The event-driven trial design will follow patients until 221 occurrences of all-cause graft loss are observed, defined as return to dialysis, graft nephrectomy, re-transplantation, estimated GFR (eGFR) <15 mL/min/1.73m2, or death from any cause. A surrogate for graft loss (eGFR slope) will be assessed at 1 year based on prior modeling validation. Secondary endpoints will include measures of pharmacokinetics/pharmacodynamics. Recruitment is ongoing across North America, Europe, Asia, and Australia. DISCUSSION: IMAGINE represents the first Phase 3 clinical trial investigating the safety and efficacy of clazakizumab in kidney transplant recipients with chronic active AMR, and the largest placebo-controlled trial in this patient population. This trial includes prognostic biomarker enrichment and uniquely utilizes the eGFR slope at 1 year as a surrogate endpoint for graft loss, which may accelerate the approval of a novel therapy for patients at risk of graft loss. The findings of this study will be fundamental in helping to address the unmet need for novel therapies for chronic active AMR. TRIAL REGISTRATION: ClinicalTrials.gov NCT03744910 . Registered on November 19, 2018.


Subject(s)
Kidney Transplantation , Humans , Kidney Transplantation/adverse effects , Antibodies, Monoclonal, Humanized/adverse effects , Double-Blind Method , Glomerular Filtration Rate , Graft Rejection/drug therapy , Graft Rejection/prevention & control , Isoantibodies , Graft Survival
3.
Transplantation ; 107(5): 1027-1041, 2023 05 01.
Article in English | MEDLINE | ID: covidwho-2252507

ABSTRACT

Today we know that both the humoral and the cellular arm of the immune system are engaged in severe immunological challenges. A close interaction between B and T cells can be observed in most "natural" challenges, including infections, malignancies, and autoimmune diseases. The importance and power of humoral immunity are impressively demonstrated by the current coronavirus disease 2019 pandemic. Organ transplant rejection is a normal immune response to a completely "artificial" challenge. It took a long time before the multifaceted action of different immunological forces was recognized and a unified, generally accepted opinion could be formed. Here, we address prominent paradigms and paradigm shifts in the field of transplantation immunology. We identify several instances in which the transplant community missed a timely paradigm shift because essential, available knowledge was ignored. Moreover, we discuss key findings that critically contributed to our understanding of transplant immunology but sometimes developed with delay and in a roundabout way, as was the case with antibody-mediated rejection-a main focus of this article. These include the discovery of the molecular principles of histocompatibility, the recognition of the microcirculation as a key interface of immune damage, the refinement of alloantibody detection, the description of C4d as a footmark of endothelium-bound antibody, and last but not least, the developments in biopsy-based diagnostics beyond conventional morphology, which only now give us a glimpse of the enormous complexity and pathogenetic diversity of rejection.


Subject(s)
COVID-19 , Organ Transplantation , Humans , Isoantibodies , Graft Rejection , Organ Transplantation/adverse effects , Transplantation Immunology
4.
Front Med (Lausanne) ; 9: 967749, 2022.
Article in English | MEDLINE | ID: covidwho-2009878
5.
Front Med (Lausanne) ; 9: 914424, 2022.
Article in English | MEDLINE | ID: covidwho-1911060

ABSTRACT

Introduction: Kidney transplant recipients (KTR) are at high risk of developing severe COVID-19. However, vaccine response in this population is severely impaired with humoral response rates of 36-54 and 55-69% after two or three doses of SARS-COV-2 vaccines, respectively. Triple immunosuppression and specifically the use of anti-proliferative agents such as mycophenolic acid (MPA) or azathioprine (AZA) have been identified as risk factors for vaccine hypo-responsiveness. Methods: We hypothesized that in vaccine non-responders to at least three previous vaccine doses, pausing of MPA or AZA for 1 week before and 1 week after an additional vaccination would improve humoral response rates. We conducted an open-label, non-randomized controlled pilot study including 40 KTR with no detectable humoral response after three or four previous vaccine doses. Primary endpoint was seroconversion following SARS-CoV-2 vaccination. MPA and AZA was paused in 18 patients 1 week before until 1 week after an additional vaccine dose while immunosuppression was continued in 22 patients. Results: There was no difference in the humoral response rate between the MPA/AZA pause group and the control group (29 vs. 32%, p > 0.99). Absolute antibody levels were also not statistically significantly different between the two groups (p = 0.716).Renal function in the MPA/AZA pause group remained stable and there was no detection of new onset donor-specific antibodies or an increase of donor-derived cell-free DNA serving as a marker of allograft damage throughout the study period. Conclusion: Pausing of MPA/AZA for 2 weeks peri-vaccination did not increase the rate of seroconversion in kidney transplant. However, one in three KTR without humoral immune response to at least three previous vaccinations developed antibodies after an additional vaccine dose supporting continued vaccination in non-responders.

6.
JAMA Intern Med ; 182(2): 165-171, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1589288

ABSTRACT

Importance: Fewer than 50% of kidney transplant recipients (KTRs) develop antibodies against the SARS-CoV-2 spike protein after 2 doses of an mRNA vaccine. Preliminary data suggest that a heterologous vaccination, combining mRNA and viral vector vaccines, may increase immunogenicity. Objective: To assess the effectiveness of a third dose of an mRNA vs a vector vaccine in KTRs who did not have antibodies against the SARS-CoV-2 spike protein after 2 doses of an mRNA vaccine. Design, Setting, and Participants: This was a single center, single-blinded, 1:1 randomized clinical trial of a third dose of vaccine against SARS-CoV-2, conducted from June 15 to August 16, 2021, in 201 KTRs who had not developed SARS-CoV-2 spike protein antibodies after 2 doses of an mRNA vaccine. Data analyses were performed from August 17 to August 31, 2021. Interventions: mRNA (BNT162b2 or mRNA-1273) or vector (Ad26COVS1) as a third dose of a SARS-CoV-2 vaccine. Main Outcomes and Measures: The primary study end point was seroconversion after 4 weeks (29-42 days) following the third vaccine dose. Secondary end points included neutralizing antibodies and T-cell response assessed by interferon-γ release assays (IGRA). In addition, the association of patient characteristics and vaccine response was assessed using logistic regression, and the reactogenicity of the vaccines was compared. Results: Among the study population of 197 kidney transplant recipients (mean [SD] age, 61.2 [12.4] years; 82 [42%] women), 39% developed SARS-CoV-2 antibodies after the third vaccine. There was no statistically significant difference between groups, with an antibody response rate of 35% and 42% for the mRNA and vector vaccines, respectively. Only 22% of seroconverted patients had neutralizing antibodies. Similarly, T-cell response assessed by IGRA was low with only 17 patients showing a positive response after the third vaccination. Receiving nontriple immunosuppression (odds ratio [OR], 3.59; 95% CI, 1.33-10.75), longer time after kidney transplant (OR, 1.44; 95% CI, 1.15-1.83, per doubling of years), and torque teno virus plasma levels (OR, 0.92; 95% CI, 0.88-0.96, per doubling of levels) were associated with vaccine response. The third dose of an mRNA vaccine was associated with a higher frequency of local pain at the injection site compared with the vector vaccine, while systemic symptoms were comparable between groups. Conclusions and Relevance: This randomized clinical trial found that 39% of KTRs without an immune response against SARS-CoV-2 after 2 doses of an mRNA vaccine developed antibodies against the SARS-CoV-2 spike protein 4 weeks after a third dose of an mRNA or a vector vaccine. The heterologous vaccination strategy with a vector-based vaccine was well tolerated and safe but not significantly better than the homologous mRNA-based strategy. Trial Registration: EudraCT Identifier: 2021-002927-39.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Transplant Recipients , Adult , Antibodies, Viral/immunology , Antibody Formation/immunology , Female , Humans , Kidney Transplantation , Male , Middle Aged
7.
J Am Soc Nephrol ; 32(3): 708-722, 2021 03.
Article in English | MEDLINE | ID: covidwho-1496675

ABSTRACT

BACKGROUND: Late antibody-mediated rejection (ABMR) is a leading cause of transplant failure. Blocking IL-6 has been proposed as a promising therapeutic strategy. METHODS: We performed a phase 2 randomized pilot trial to evaluate the safety (primary endpoint) and efficacy (secondary endpoint analysis) of the anti-IL-6 antibody clazakizumab in late ABMR. The trial included 20 kidney transplant recipients with donor-specific, antibody-positive ABMR ≥365 days post-transplantation. Patients were randomized 1:1 to receive 25 mg clazakizumab or placebo (4-weekly subcutaneous injections) for 12 weeks (part A), followed by a 40-week open-label extension (part B), during which time all participants received clazakizumab. RESULTS: Five (25%) patients under active treatment developed serious infectious events, and two (10%) developed diverticular disease complications, leading to trial withdrawal. Those receiving clazakizumab displayed significantly decreased donor-specific antibodies and, on prolonged treatment, modulated rejection-related gene-expression patterns. In 18 patients, allograft biopsies after 51 weeks revealed a negative molecular ABMR score in seven (38.9%), disappearance of capillary C4d deposits in five (27.8%), and resolution of morphologic ABMR activity in four (22.2%). Although proteinuria remained stable, the mean eGFR decline during part A was slower with clazakizumab compared with placebo (-0.96; 95% confidence interval [95% CI], -1.96 to 0.03 versus -2.43; 95% CI, -3.40 to -1.46 ml/min per 1.73 m2 per month, respectively, P=0.04). During part B, the slope of eGFR decline for patients who were switched from placebo to clazakizumab improved and no longer differed significantly from patients initially allocated to clazakizumab. CONCLUSIONS: Although safety data indicate the need for careful patient selection and monitoring, our preliminary efficacy results suggest a potentially beneficial effect of clazakizumab on ABMR activity and progression.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Graft Rejection/therapy , Interleukin-6/antagonists & inhibitors , Kidney Transplantation/adverse effects , Adult , Allografts , Antibodies, Monoclonal, Humanized/adverse effects , Double-Blind Method , Female , Glomerular Filtration Rate , Graft Rejection/immunology , Graft Rejection/physiopathology , Humans , Infections/etiology , Interleukin-6/immunology , Isoantibodies/blood , Male , Middle Aged , Tissue Donors , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL